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Abstract. In his studies off electrom in atoms, Racah introduced the g o u p  SO(7) and its 
subgroup Gz, with irreducible representations (irreps) Wand  U. By using a quarklike 
basis, these groups can be convenientlyembedded in SO@). This larger group, with irreps 
V, possesses two other SO(7) groups as subgroups that themselves contain G2 as a 
wmmon subgroup. One of them, SO(7)' (with irreps W'), has been used to derive new 
selection rules on operators of physical interest. W e  describe methods for calculating the 
overlaps (VWUlVW'U), the ultimate aim being to facilitate the transformations between 
SO(7) and SO(7)'. A table of relevant &U symbols (the Gz generalizations of.6-j symbols) 
is given. When V possesses null triality (that is, when the symbols labelling the open ends 
of the Dynkin diagram for SO@) are equal), an undetermined phase in the overlaps can be 
used to generate matrix representations of S,, the permutation group on three objects. A 
brief table of zero overlaps is given. A remarkable factorization of the overlaps 
((431O)W(40)1(43lO)W'(40)) is noted, where (4310) is the irrep of SO(8) with dimension 
25725. 

1. Introduction 

Within the last two years, the group SO@) has been introduced into the theory of the 
atomic f shell, thereby leading to explanations for some unexpected properties of the 
matrix elements of certain three-electron operators tj for such complex configurations 
as f6 and f'(Judd and Lister 1991,1992a-e, 1993a-d). A key feature of the analysis is 
the augmenting of the group sequence SO(8) 2 SO(7) 3 Gz, in which the standard 
groups SO(7) and G2 of Racah (1949) appear, with the altemative route SO(8) 3 
SO(7)' 3 G2. This procedure takes advantage of the well known automorphism of 
SO@), as discussed, for example, by Georgi (1982). The group SO(7)' provides 
altemative labels for our states and operators, in terms of which new selection rules 
and additional applications of the Wigner-Eckart theorem can be made. 

Consider, for example, the state (VWU), where V, W and U are irreducible 
representations (irreps) of SO@), S0(7),  and Gz. Further labels may be necessary, of 
course, to completely define the state, but for present purposes they are irrelevant. 
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When the reductions SO(S)+SO(7)' and S0(7)'+G2 are considered, the irrep V can 
be expected to break up into several irreps W' of S0(7)', each of which contains U o f  
G2. We can write 

B R Judd et a1 

Our attention in the present paper is directed to the overlaps ( V W ' U I W u ) .  It is 
convenient to specify the irreps appearing in these coefficients by means of their 
highest weights, following the scheme of Racah (1949). For an irrep V of reasonably 
small dimension, the overlaps can be found by elementary methods, as we have 
indicated already (Judd and Lister 1992~). However, for irreps V that describe some 
of our three-electron operators, the dimensions of V can run quite high. In a recent 
study of the operators t6 and t, in the half-filled f shell, it has been noticed that some 
selection rules could be accounted for if the overlaps 

((4310)(420)(40) I (4310)(311)'(40)) (2) 

((4310)(420)(40) 1(4310)(410)'(40)) (3) 

and 

were both zero (Judd and Lister 1993d). The dimension of (4310) is 25725 and the 
elementary methods for finding the overlaps (2) and (3) can no longer be applied. 
Although this problem provided much of the motivation for the present analysis, a 
knowledge of non-zero overlaps is crucial to any numerical work involving transfor- 
mations from SO(7) to SO(7)'. It is to the evaluation of such coefficients that we turn 
our attention here. 

2. Group structure 

Each generator for Racah's groups SO(7) and G2 is a coupled product of a creation 
and an annihilation operator for an f electron. When extending the theory to SO@), 
sextuple products of these operators are introduced. The ensuing complications can 
be avoided by using the creation and annihilation operators for quarklike objects 
rather than electrons, as was first noticed by Labarthe (1980). In this scheme, the 
16384 states of the atomic f shell are formed by coupling four statistically independent 
elementary spinors (#) of SO(7). Two panty labels are also required (Judd and 
Lister 1991). Each spinor possesses eight components; they span the irrep (1000) of 
SO(8). The angular-momentum structure of (1000) is s+f, thereby providing what we 
call an s quark and an f quark. The four different quarks can be distinguished by a 
subscript 8, which runs over the range A, p, v ,  and e. It is convenient to make the 
definitions 

in terms of which the generators of SO(8) are the 28 components of the tensors VI), 
VC3), VCs) and 2") (Judd and Lister 1992~). The generators of the SO(7) subgroup used 
by Racah (1949) in his classic analysis now take the form 

(5) V(1) V(5) - 9" + (y)'"zQ 
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while those of SO(7)' are simply V('), V(3) and V"). If we had used the creation and 
annihilation operators of electrons rather than quarks in the definition of V(", the 
three tensors for which k = l ,  3 and 5 would havc given the generators of SO(7) 
instead of SO(7)'. This demonstrates a remarkable reciprocity between the f quark 
and the f electron (it is convenient to continue to distinguish these two objects by 
using italic and roman characters, respectively). 

By reversing the relative phase between each s quark and the corresponding f 
quark (that is, by making the replacements sJ-+-sB and ss-+-ss. or, alternatively, 
Afs- -A and fs+ -&), a third SO(7) group can be formed, which we call SO(7)" 
(Judd and Lister 1992a). Its generators are 

(6) -+v(')- 3 112 0 (7) z . v(1) v(5) 
All three groups S0(7),  SO(7)' and SO(7)" possess a common subgroup in Gz, whose 
14 generators are the components of V(') and VQ.  

3. Casimir's operators 

An obvious way to calculate the overlap coefficients is to diagonalize Casimir's 
operator G for SO(7) using the basis IVW'U). We find, following the usual prescrip- 
tion (see, for example, Wybourne 1974 p 139), 

~ ( ~ o ( 7 ) )  = (v(1))z+ (v(5))2+f(v(3))2- ( . $ ) 1 / 7 ~ ( 3 ) . ~ ( 3 ) j  + j ( z@))z .  (7) 
We can take advantage of our knowledge of other Casimir operators, namely 

to cast equation (7) in the form 

G(SO(7)) =+G(S0(8)) - +G(S0(7)')  + 3G(Gz) - (~)"'(Y0).Z")). (11) 

In terms of the highest weights (uIuzu3u4) of V ,  (w;w;w;) of W' and (uI%) of G2, 
the eigenvalues (G) of the various Casimu operators are given by 

(G(SO(8))) = 3 [ ~ 1 ( ~ 1 +  6 )  + U Z ( U ~  +4) + U ~ ( C J ~  + 2) + U:] (12) 

(G(SO(7)')) =J[w;(wi + 5 )  + wi(w; + 3) + w;(w; + 1)J (13) 

(G(G,))=$[u:+ U:+ u 1 ~ + 5 u 1 + 4 u z ] .  (14) 
The only term in equation (11) that presents us with a problem is the last. The tensor 
Vc3) belongs to (110)' of SO(7)'. just as Racah's U(3) belongs to (110) of SO(7). AS for 
Z"), it is formed by coupling an s quark (belonging to (000)' of SO(7)') to an f quark 
(belonging to (loo)'), and thus possesses the SO(7)' label (100)'. The only SO(3) 
scalar in (110)' x (100)' is contained in (111)' and consequently in (00) of GI, which 
are therefore the appropriate labels for V(3).Z(3).  However, V(,) is a generator of 
SO(7)' and therefore cannot connect different irreps of that group. Thus the selection 
d e s  for V(').Z(?are those of an operator with the labels (100)' of SO(7)' and (00) of 
GZ . 
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4. Elementary methods 

Even though the matrix elements of Vp)-Z(q may be unknown, we can often use our 
knowledge of the eigenvalues of G(SO(7)) to find the overlaps we seek. Consider, for 
example, the irrep (3100) of SO(8). It is of interest to us because it is the sole source 
for the irrep (221) that labels some states appearing in the atomic configurations and 
f‘ ( R a d  1949, table 1). We have given the branching rules for the reductions 
S0(8)6S0(7)  and SO(S)+SO(7)’ elsewhere (Judd and Lister 1992a, table 1); for 
the present case they run 
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(3100)+(211) +(221) (15) 
(3100)+(100)‘+ (110)‘+(200)’+(210)’+(300)’+(310)’. (16) 

The irreps (lo), (20) and (30) of G2 each appear twice in (3100). More precisely, each 
appears just once in both (211) and (221) and, for a particular (uO), just once in (~00)’ 
and (ul0)‘. We find (G(SO(8))) is 16 for (3100); (G(SO(7)’)) is iu(u+5) for (~00)’ 
and i (u+l)  (u+4) for (u10)‘; and 3{G(G2)) is au(u+5) for (u0). Within the basis 
provided by (~00)‘ (u0) and (ulO)’(uO), the matrix of G(S0(7)), from equation (ll), 
takes the form 

The cancellation of all terms in u and U’ appears to be quite remarkable, until it is 
recognized that (G(SO(7))) is 10 for (211) and 13 for (221), and that these numbers, 
being the eigenvalues of the mauix (17), must add to give the diagonal sum of that 
matrix, namely 23. Diagonal sums of this kind provide very useful checks on the 
working. The term involving VC3’-Z0’ produces the off-diagonal entries x .  No contri- 
bution is made to the diagonal because the Kronecker squares (ul0)” and (~00)’~ do 
not contain (100)’ (see Wybourne 1970, table D-4, with extensions). 

It only remains to diagonalize (17). The fact that the eigenvalues are 10 and 13 
fixes the magnitude of x at 2’”, and we get 
1(3100)(21 l)(uO)) = (~)L“1(3100)(uOO)’(~0)) + (:.)“’I (310O)(ulO)’(uO)) 
1(3100)(221)(~0)) = (~)”2[(3100)(~00)’(~0)) - (~~)”’~(3100)(~10)’(u0)) 

(18) 

for u = 1, 2, or 3. The coefficients in these equations give the required overlaps. All 
phases (consistent with orthononnality) are arbitrary at this point, though as contact is 
made with other analyses certain constraints may be imposed. 

Once the phases have been fixed we can write down the expansions of the states 
[(3100)(211)”(uO)) and 1(3100)(221)”(uO)), in which irreps of SO(7)” appear, by simply 
reversing the relative phases of the s and fquarks in the expansions (18). Take, for 
example, u=3.  A four-quark state produces the irreps of SO(7)’ appearing in (s+n4, 
that is, in 

The irrep (300)’ can only derive from (OOO)‘(lOO)”, while the source of (310)‘ can only 
be (loo)’*. The fist corresponds to sf. the second to f‘. Thus we can obtain the 
required expansions for (211)” and (221)” by reversing the signs preceding either both 
initial kets or both final kets in the expansions (18). Similar results hold for U =  1 and 
u=2. Again, consuaints on our options may come from phase choices made 
elsewhere. We return to this point later. 

[(om)’ + (100)’Y. (19) 
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5. Null C i t y  

The branching rules for SO(S)+SO(7) and SO(S)+S0(7)’ given for (3100) in the 
decompositions (15) and (16) are strikingly different. However, for many irreps of 
interest they are the same. As Wyboume (1992) has pointed out, this occurs for the 
irrep (u1uzu30) of SO(8) when u2 + u3 = ul. In Dynkin’s notation (as used, for example, 
by McKay and Patera 1981), this implies identical labels on the free ends of the three 
arms of the diagram (a triskelion) for SO(8). Wyboume (1992) refers to such an event 
as null triality. A simple example is the irrep (2200) of dimension 300, corresponding 
to Dynkin labels 0 at the ends of the arms and 2 at the centre. The irrep (20) of Gz 
occurs three times in (2200) corresponding to W= (ZOO), (210) and (220). Because of 
null triality, we know that the W’ labels must be the same, namely (200)‘, (210)’ and 
(220)’. The method of the previous section gives the overlaps ((2200)W‘ (20)l 
(2200) W(20)), which can be presented in the form of a matrix R(a): 

-a(2/5)”* . (20) i - (7/20)”’ - (14/25)”’ 
R(a) = -a(7/20)’” a/2 (-(iz)l’z -(2/5)’‘* 115 

We have anticipated the use of R(a) in section 10, where Racah’s phases eliminate 
most of the sign choices for the overlaps. However, an ambiguity in a remains, as is 
made explicit in equation (20). 

We can regard the matrix R(a) as a coordinate transformation in ordinary three- 
dimensional space. It is easy to check that [R(- l)I3=1 and [R(l)y=l.  Moreover, 
detR(- l )=l  anddetR(l)=-1. ThusR(-1)canbe thoughtofasarotationthrough 
2 d 3  andR(1) asarefiection. WecaninfactusevariouspowersofR(1) andR(-1) to 
form a matrix representation of the crystallographic point group Gv, which is 
isomorphic to the permutation group on three objects, S3. These groups are manifes- 
tations of the six outer automorphisms of S0(8 ) ,  which seem to have been first 
recognized as relevant to problems in particle theory by Flowers and Szpikowski 
(1964), who refer to the mathematics as ‘a bewildering world [where] a physicist may 
prefer to be guided by his physics’. 

Bewildering or not, we can apply the conditions on R(a) to greatly assist us in our 
determination of the overlaps for cases where matrices larger than 3 x 3 occur. 
Unfortunately we cannot go very far because quartic and quintic equations soon 
appear. The largest matrix we have successfully solved by using the null triality 
condition is 6 X 6, corresponding to the overlaps ((4220)W‘(22)1(4220)W(22)), where 

Before turning to the development of a more systematic procedure, we note that 
the ambiguity in a corresponds to the impossibility of distinguishing SO(7) from 
SO(7)” without a knowledge of the signs of the matrix elements of Z(3), which lie 
outside the range of the analysis of Racah (1949). The middle row of the matrix (20) 
corresponds to W’ = (210)’ of sf, and we see that the elements in this row, all of which 
involve a, reverse their signs in step with the sign change of s orf in going from SO(7) 
to SO(7)”. 

W= (220), (320), (321), (420), (421), (422). (21) 

6. Induced transformations 

Since our model of the atomic f shell comprises four quarks, no physical operator 
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involves more than four creation operators and four annihilation operators. Thus no 
representations of W’ beyond those appearing in [(OOO)’+ (lOO)’]* are required. This 
limits the interesting irreps (uIu2u3u4) of SO@) to those for which the sum of the four 
weights ui does not exceed 8. All of these can be formed by coupling pairs (VI, V,) of 
irreps for each of which the sum of the weights does not exceed four. A useful choice 
is Vl = V,= (2200), since (2200)2 generates the irreps 

(0000), (2OOO), (2200) (twice), (111 I l), (2220), (222f2) ,  (311 I l), 

B R Judd et a1 

(3210), (331 Il), (4000), (4200), (4220), (4400) 

(llOO), (2110), (221 I l), (3100), (3210), (322+ l), (3300), (4110), (4310) 

(22) 

(23) 

in its symmetric part and 

in its antisymmetric part. Most of the irreps of interest to us are included in the 
sequences (22) and (23), and we can take advantage of the symmetry or antisymmetry 
of their origin when working out the coupling coefficients. 

A transformation of the type R(a) leaves the G2 label for the states invariant. This 
is also true, of conrse, for its inverse, which expands a state labelled by W’ in terms of 
the W states. This means that we do not need to work out the complete 
Clebsch-Gordan coefficients involved in coupling Vl and V2 to V but only the part 
comprising the group labels U, W (or W‘) ,  and V.  Coefficients of this type are usually 
referred to as isoscalar factors (Edmonds 1962). In the notation of Racah (1949), the 
isoscalars of interest to us for the problem at hand are 

(((2200) ( 2 2 0 0 ) ) W  u~(2200)w;ul + (2200)w;u,). (24) 

Once these coefficients are known we can make the substitutions for (2200)W1U1 and 
(ZZOO)W;U, with the aid of the inverses of matrices of the type (20) and then couple 
the parts (2200)W,U1 and (2200)W,U2 to obtain the states defined by VWU. By this 
device the transformations from Wi to Wi in each of the component irreps (2200) 
induce the transformation from W’ to W that gives the required overlaps. 

7. Isnscalar factors 

To calculate the isoscalars (24) we can appeal to well-established techniques, such as 
that of Nutter and Nielsen (1963). Adapting their approach, we first consider the two 
parts (U and b) of a system coupled at the SO(7)‘ level. That is, we take the state 
I(W;W;)W’U) and require that the eigenvalues of V$).Vp), calculated in the basis 
IW;U,, W;U2, U) (for various U, and U,) be equal to those of 

The eigenfunctions are just the isoscalars (W’UI WkU, + WiU,) we seek. The operator 
(25) can be evaluated by using equations (9) and (IO) to convert the three parts to the 
differences between two Casimir operators, and then determining their eigenvalues 
from equations (13) and (14). When calculating the matrix elements of @.Vi3’, we 
take advantage of the fact that our three-electron operators are scalar with respect to 
the orbital angular momentum L, so we can limit our analysis to irreps U of G2 that 
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contain the SO(3) scalar. We use equation (7.1.6) of Edmonds (1957), with recoupled 
bras and kets at the G2 level, to give 

(WiU,, w;u,, Uolv:3).vb3)lw;U3, W& UO) 

=- [ (2L,+1)(2L~+1)]-~2(u0)UiLi+~~L1)(~~L3+U~31t10)  
L1.LI 

x ( wi UlLlII VL3)Il w; U3L3) (w;U*LlII Vb3'll WXL3).  (26) 
To reduce. mathematical clutter in equation (26), we have suppressed any multiplicity 
labels that might be necessary to define the states. The reduced matrix elements of f13) 
in this expression can be read off from the tables of Nielson and Koster (1963) 
provided their entries for U"' are multiplied by 7'". Some of the isoscalar factors 
involving L1 and L3 in equation (26) can be extracted from tables VIa and XIVa of 
Racah (1949); others need to be calculated. In a few cases U occurs twice in the 
reduction of U, x U,. Our choice of multiplicity labels is described in the appendix. 

It is convenient to choose phases so that 

(U01 U&, + U&) = (U01 UZL1 + U&,). (27) 
We have the freedom to make this choice when U,# U, (see, for example, Butler I981 
p 50). When U,= U,, it might be thought that there was a possibility of conflict should 
U occur in the antisymmetric part of G. However, the SO(3) scalar always occurs in 
the symmetric part of Ll X L,, so the isoscalar factors necessarily vanish in that case. 

8. 6-U symbols 

To describe our results we generalize equation (7.1.6) of Edmonds (1957) from SO(3) 
to G,. The tensor V("is rewritten as V(l0) to indicate the G,irrep to which V" belongs. 
Equation (26) becomes 

(w;UI. w;u2, UlvgO'.v6'"lw;U3, w;u,, U) 

and we identify the right-hand side of equation (26) with the right-hand side of 
equation (28). The array of six irreps of Gz is a generalization of a 6-j synibol; we call it 
a 6-U symbol. Objects of this kind have been widely discussed for various groups (see, 
for example, Griffith (1962), Butler (1981) and Judd (1986)). In fact, equation (28) 
can be regarded as a special case of equation (19.9) of Butler (1975). The triple 
uprights appearing in the matrix elements above indicate reduction with respect to Gz 
rather than to SO(3). That is, tbe L dependence inherent in an SO(3) reduced matrix 
element has been removed by factoring out an isoscalar factor according to the 
scheme 

(WIUilllVc'o)lllW; U,)( U3L3 + (10)3 I UlLi) 
= [Dim( U1)/(2L1 + 1)]'"( W;UIL,I/ V")II WiU3L3). (29) 

According to Nielson and Koster (1963), the interchange W;UlLlttW;U3L3 in the 
matrix element of V") introduces the phase (-l)'I-'3. The reciprocity condition of 
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Table 1. Values of the reduced 'matrix elements ((~oO)W;U,~~'o~~(zzoO)W;U;) for 
T('o)=VL'n) and 2"". The zero entries derive from the SO(7)' labels for Yen) and Z(l0) 
(namely (110)' and (loO)', respectively) and the fact that V('" is a generator SO(7)' and 
must necessarily be diagonal with respect to W'. 

(210)'(11) 

(ZlO)'(ZO) 

(210)'(21) 

3 ( 7 y  
0 
0 
0 

4 
0 
0 

l2(3/7)"' 
0 

-3(6)"' 

3 ( 7 ) 4  

0 
4(22/7)"2 
0 
0 
0 

-24/(7)" 

-4(22/7)"' 
-9(10/7)"' 

(154)"' 

0 
-3(14/5)1J2 

-24/(5)m 
-9(3/5)" 

0 
0 

4 
0 
0 
12(6/35)"' 

0 

-12/(5)"' 

- l2(3qm 

-3(2/35)" 
-4(22/qm 
-(154)"' 
0 
0 
0 
0 

Racah (1949, equation (47)), when applied to the isoscalar appearing in equation (29), 
precisely cancels this phase so that the rule 

(w: U,III v ( 1 ~  W; U,) = (w;u3iii v(1o)in w; U,) (30) 
is valid. Values of the triply reduced matrix elements relevant to the problems under 
study are set out in table 1. The condition (30), taken with equation (27) and the 
Hermiticity of the operator Vc)-Vi3),  leads to the very convenient symmetry con- 
ditions 

={? 2 (U,,) 
on the 6-U symbols. These relations are unaffected by the inclusion (when necessary) 
of multiplicty labels for the triads [Ul, U,, and [U,, U,, U. A tabulation of values is 
given in table 2 for U= (22), (40) and (42). These irreps are appropriate for analyses 
(to second-order in perturbation theory) of the non-trivial scalar operators in the 
atomic f shell. 

9. Extensions to SO@) 

The tabulation of the 6-U symbols is a by-product of the calculation of the SO(7)' 
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isoscalar factors ( V U 1  WiU, + W;Ud, which, as stated at the beginning of section 7, 
is the first part of our project forcalculating the isoscalars (24). However, the 6-U 
symbols are very useful when we move up from SO(7)' to SO(8) because the 
analogous operator to @)-Vi3), namely Z!3)*Zf), is built from tensors of the type Z") 
that belong to the same irrep (10) of Gz that the tensors of the type V(3) do. Thus the 
same 6-U symbols appear in the analogue of equation (28) as before. All the phase 
choices buried in the calculation of the entries of table 2, and depending, of course, on 

carried forward without the need for additional analysis. 

of Zi3).Zi3' is calculated in the basis provided by the states 

~ choices made by Racah (1949) and Nielson and Koster (1963), are automatically 

The procedure for SO(8) follows that described in section 7 for SO(7)'. The matrix 

1(22oo)w:ul, (22oo)w;~2, rl) (32) 
for various W;, Wi, U, and U,. The replacements V~la)+Z!la) are made in equation 
(28) for i  = a and i= b .  The new reduced matrix elements are given in table 1, and the 
6 4  symbols can be read off from table 2. The eigenvalues of the matrix are 
necessarily those of 

:(zy +zp)*-:(zp))z- +(zp)2 (33) 
which can be expressed in terms of Casimir's operators for irreps of SO@), S0(7)', 
SO@), S0.(7)', SO&) and SOb(7)' (taken in that order) as 

~[G(v)-G(w)-G(22C!O)+G(W;)-G(2200)+G(W~)] (34) 
with the help of equations (8) and (9). The eigenfunctions of the matrix give the 
required isoscalars (24). 

This procedure can be simplified by taking advantage of the separation of (2200)2 
into symmetric and antisymmetric parts, as given by the sequences (22) and (23). For 
example, for V =  (4310) it is better to replace the basis (32) by the antisymmetric 
forms 

(~)'"l(22ao)w;Ul, (zzoo)w;U*, rl)- (:)1'21(2200)w;U,, (2200)w;u1, U). (35) 
We also note that the matrix of Z$lo).Zfa), calculated in this basis, breaks up into two 
non-interacting blocks. This is because we can regard both Z!'" and Zpa) as changing 
the number of s quarks in each space (a  and b) by 1, thereby preserving the evenness 
or oddness of the total number of s quarks in the coupled forms (35). This greatly 
simplifies the process of diagonalization. 

10. Overlaps 

We are now ready to follow the procedure outlined at the end of section 6 to calculate 
the overlaps. The expansions of I (2200)WU) in terms of 1(220O)W'rl), as found by the 
elementary methods of sections 4 and 5, contain many arbitrary phases. Severe 
limitations can now be imposed on these phases by insisting that the transformation 
from SO(7) to SO(7)', followed by a recoupling of (2200)W;U1 and (2200)W& 
produces states belonging to the original V and not to any others. In this way the 
phase choices of Racah (1949) and Nielson and Koster (1963) make themselves felt. 
However, the phase a is not constrained and is carried forward in the calculations. 



5000 B R Judd et a1 

As an example of our analyses we give in table 3 the overlaps S(a) for the irreps W 
and W' belonging to (4310) of SO(8) and containing (22) of Gz. Since (4310) possesses 
null triality, we expect S(u) to have similar properties to R(a). It is straightforward to 
confirm that the matrices S(1), S(-l), and their various products form a represen- 

Table 2. Values of the 6-U symbols 

[: : (3 
for U= (22). (40) and (42). When required, multiplicity labels for the couplings (U,VJU 
or (U3U,) U are indicated by the subscripts 1 and 2. When a coupling requires a multiplicity 
label for a particular U but not for a different U, the entry for the latter is listed just once 
opposite the subscripted coupling 1. All numbers following a solidus are in the denomina- 
tor. 

1/56(2.2)'" 
(1430)"'/3696 
0 
0 
0 
(55)"/1056 

-5/448 
-(65)'"/2464 
0 
0 

0 

0 
0 

- 1/28(11)"2 
-2714928 

- (715)"2/27104 
-9/176(33)'" 
0 
0 

- 1/12(21)'~~ 
1/8(731)'" 

-5/28(165)"' 
-U64 
3/64(21)lt2 

-5/32(385)'" 
-3/16(231)'" 
-11/896 
15/lZS(ll55)"' 
0 
0 
0 
2/189 
1/42(2)1'2 

-5/168(15)"' 
1/112 

-1/126(22)1" 
-5/18(770)"' 
-13/1344 
-25/224(165)"' 
-1/336(11)"' 
3/128(21)"' 
25/384(55)'" 

-1/8(231)'" 
-5/48(385)'12 

- 5/64(385)"' 
-(3)"2/704 

3/4928 
(15)"'/1232 

-(15)"'/2156 
0 
31/4928 

-3/32(231)'" 
(5)"V352 
Y1U2 
0 
1/2816 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
7/2112 
0 

- 13/132(162)"' 
0 
5/132(70)"' 
0 
0 
0 
0 
0 
0 

0 

a 

-1/8(231)"* 

-U132 
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Table3. The overlaps ((4310)W'(22)1(431O)W(ZZ)). The entries below correspond to 
S(1) of section 10. To find S(-l), the last four rows should be multiplied by -1. These 
rows are labelled by irreps W' with highest weights (w;w;w;) whose sum wi + w; + w; is 
odd, corresponding to an odd number of s quarks. 

W 
W' (321) (431) (420) (311) 

(321)' 27/50 (286/625)"' -(13/625)"' (27/350)"' 
(431)' (286l625)'" -3/50 -(ll/1250)'" -(143/525)'" 

-1104l525)'" 

(321)' 
(431)' 
(420)' 
(311)' 

(42lj' 

W 
(331) 

-(14/125)1'2 
(143/875)"' 

-(234/875)"' 
-(16/735)"' 

3/35 
(286/ 1225)"' 
(143/735)"' 

-(143/3500)"2 
(72l875)"' 

-(111875)"' 
-(143/1470)"2 

(286/1225)"' 
-51/70 

(2/735)In 

(421) 

0 
-(1/84)"' 

-(11/42)"' 
(143/441)"' 
(143/735)"' 

(2/735)"* 
-19/42 

tation of the permutation group S3, as before. That is, all matrix multiplications 
involving the various products of the S(a) are identical to those of the R(a) if we make 
the correspondences S(l)*R(l) and S(-l)*R(-1). In particular, [S(l)]'= 1 and 

We have examined several sets of overlaps for which V and U correspond to 
operators of physical interest. Table 4 lists the null overlaps we have found. They are 
more numerous than might have been expected; however, the overlaps (2) and (3), 
whose possibly null values provided much of the motivation for our calculations, turn 
out to be -(11/70)"* and (9/70)"*, neither of which is zero. 

[s(-1)13=1. 

Table4. Null overlaps (W'UlVWCi) .  The entries in the columns W and W' can be 
interchanged, the prime remainkgin themlumn W'. ?.reps Wor W that occurmore than 
once in a partialar V are distinguished by subscripts. 

V W W' U 

(3311) none (zz), (40), (42) 

(4220) none (42) 

(4220) (320) (421)' (22) 
(4220) (322) (421)' (40) 

(4310) (321) (421)' (22) 
(4310) (430) (430)' (33) 

(4310) (4311, (4311, 142) 
(4310) none (40) 
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Tqble 5. Irreps W occurring in (4310)W(uO). They are arranged to emphasize an inherent 
triplet structue. 

(20) (311)(321)(331) 
(30) (311)(321)(331), (310J(320)(330), (411)(421)(431) 
(40) (311)(321)(331), (410)(420)(430), (411)(421)(431) 
(50) (411)(421)(431) 

11. The special case (4310) W(u0) 

The irreps W containing (u0) of Gz occur in a remarkable triplet pattem in (4310). 
This is shown in table 5. The elementary methods of section 4 can be used to 
determine the overlaps for u=2~and  u=5. Ordering the irreps W and W' in the 
sequence (wll), (w21) and (w31), where w =3 and 4 for u=2 and 5 respectively, we 
obtain the same matrix T(a) for both values of U, namely 

(36) 1 
1 

(5/ 14) (55/98)'" 
T(a) = a(5/14)1'2 (a/2) -a(11/28)"' ' 

(55/98)'* 2/7 -(11/28)'" 3/14 
We have also calculated the overlaps ((4310)W'(40)1(4310)W(40)) by the methods of 
sections 7-10, getting a 9 x 9 matrix P(a). Very remarkably, every entry in P(a) can 
be written as a product of one entry of T(a) and one entry of Q(a), where 

(11/20)'" ' (37) 

-3d5 ~(115)"~ ~(11125)'" 
Q(a) = (1/5)'" -1/2 i ~(11/25)'" -~(11/20)"~ -a110 

The rule of composition is as follows. We write T(a) as (wIIw2), where the rows of 
T(a) are labelled by wi= 1, 2, 3 .and the columns by w2= 1,2,3. We write Q(a) as 
(w:w;lwlw3). where the rows of Q(a) are labelled by (wiw;) =(40), (41), (31) and the 
columns by (wIw3)=(40), (41), (31). Then 

( ( 4 3 1 ~ ) ( ~ I ~ ~ ~ ~ ) ( 4 ~ ) ~ ( ~ ~ ~ ~ ) ( ~ i ~ z ~ 3 ) ( 4 ~ ) ) = ( ~ ~ ~ ~ z ) ( ~ ~ ~ ~ ~ ~ i ~ 3 ) .  (38) 
The matrices T(a) and Q(a), as well as the composites P(a), separately follow the 
same multiplication rules in S3 as R(Q) and S(Q). A factorization of the kind 
represented by equation (38) is unique among the overlaps we have calculated. 

In quantum mechanics, we are familiar with the principle that the eigenfunctions 
of independent systems multiply while their eigenvalues add. Since the overlaps are 
the eigenfunctions of G(S0(7)), we anticipate being able to write 

((43lO)(w~w~w~)(40)[ G(SO(7)) 1(4310)(w;w~w~')(40)) 

=6(w;, w;)a(w;, w;)(w;lAlw;3+6(wI, w;')(w;w;lB]w;w;3 (39) 
where (wiwiw;) and (w;w;w;3 are two irreps of SO(7)'. This indeed turns out to be so. 
Moreover, the eigenvalues of A (which, with an arbitrary additive constant C, are 
C-4, C- 1 and C+3) can be combined in all nine ways with the eigenvalues of B 
(namely, 19 - C, 24 - C, 25 - C) to give the roots 

15,18,22; 20,23,27; 21,24,28 (40) 
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that we know must occur by evaluating (G(SO(7))) for the nine irreps appearing 
opposite (40) in table 5. We can thus see in a transparent way how the factorization 
(38) guarantees that the correct roots are produced. However, it is not obvious that 
the requirement of correct roots forces the factorization to take place; indeed, for all 
other cases we have studied it does not. Our understanding is thus a limited one, and 
we are not in a position to specify other irreps V of SO(8) and U of G2 where similar 
properties obtain. 

12. Concluding remarks 

The techniques described above allow us to calculate the overlaps (VWUlVW'U) for 
all operators in the atomic f shell that are scalar with respect to L. Extensions to 
others, such as the spin-orbit interaction, call for a generalization of equation (26). 
Instead of being able to limit outselves to the scalar component 0 of U, we would have 
to be prepared to cope with the appearance of other SO(3) ranks. The right-hand side 
of equation (26) would contain a 6-j symbol and the summations over running indices 
would become more lengthy. However, no new principle would have to be invoked. 

The permutation group S3 makes itself felt particularly strongly in cases of null 
triality, where the matrices of the type I?(-l), S(-l), etc. can be interpreted as 
rotations through 2x13. This property bad already appeared in simple cases where 
only two values of Wand W' occur, such as (2200) W(21) (Judd and Lister 1992~). The 
overlaps here tum out to be 

The reader may wonder whether explicit expressions might exist for the overlaps. 
In the course of ow work we noticed that the matrix for (3210) W(22) was the same as 
a rotation matrix for SO(3). In detail 

and (+)I/', clearly indicative of 120" rotations. 

((3210)W(22)~(321O)W'(22)) =21'2d;;(:z) (41) 
where M = - : ,  - 2 ,  :, for W=(ZZO), (320), (321) and (311) (with analogous 
correspondences for N and W'). However, an analytic result of this type cannot be 
easily generalized, since multiplicity labels are sometimes required to separate 
identical irreps of SO(7) or SO(7)'. An example of this complication o m s  in table 4. 
For the moment the unexpected results we have uncovered remain as suggestive 
examples for future analysis. 
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Appendix. Isascalars with multiplicity labels 

In the course of our work we have had to separate pairs of resultants U coming from 
several couplings of the type [UlU2]U. For [(21)(21)](22) and [(22)(22)](22), we have 
used the result of Racah (1949, equation 78) to give 

((22)101(21)L+ (21)L) =A(2L+1)1'2[:L(L+l)-21] (-41) 
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TableAl. Isoscalars (U;OlU,L+ UzL) with multiplicity labels i. The two columns headed 
by a particular [U,U,lU, correspond to i = l  and i=2 ,  respectively. All entries must be 
multiplied by [(2L+ l)lF]"', where the factor F is given at the foot of the column to which 
it applies. 

0 0  
1 0  
2 -18 
3 -15 
4 -11 
5 -6 
6 0  
7 7  
8 15 
9 0  

10 0 
F 9240 

0 
0 

39 
-78 
-66 

99 
0 

21 
-27 

0 
0 

216216 

-30 
0 

-21 
0 

-20 

-9 
0 
6 
0 

25 

25410 

-is 

-598 
0 

-316 
0 

496 
-299 
-164 

0 
366 
0 

-147 

7135128 

0 0 
0 0 

104 13 
65 -65 

-99 55 
-44 -75 
0 0 

21 133 
5 -75 
0 0 
0 0 

2oMoO 480480 

0 
0 
9(78)'" 
0 

-27(11)'n 
-3(546)1'1 
0 
0 
5(665)'13 
0 
0 

440440 

0 
0 

0 
7(11)ln 

0 
0 

0 
0 

4204200 

63(78)'" 

- 17(546)"' 

-9(665)'" 

((22)~01(22)L+(22)L)=B(2L+l)1'Z[~L(L+1)-30]. (A2) 
To normalize the isoscalars, we take A = (9240)-'" and B = (216216)-'". The orthogo- 
nal sets of coefficients are denoted by the subscript 2 and are set out in table Al.  

For [(21)(21)](40) the choice is not so obvious. The analogues of equations (Al) 
and (AZ) can be found in table VIa of Racah (1949), but his entries (211x121) for i= 1 
and 2 are not orthogonal. To avoid high prime numbers as far as possible we pick 

((40),01(21)L+ (21)L) = [(2L+ 1)/480480]"2(21~~,121). (A41 
For his work on the Coulomb interaction in the f shell, Racah only needed one set of 
coefficients coming from the coupling [(21)(22)](40) in spite of the fact that (40) 
occurs twice in (21)~(22).  The pair we use are given in table Al.  A linear 
combination of them is required to produce Racah's (211X(22). 

((40),01(21)L+ (21)L) = [(2L+1)/200200]'~~[~(211X1121)+~(211~z121)3 (-43) 
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